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Abst rac t  

This paper introduces a general and powerful framework for the analysis of uncertain 

systems, encompassing linear fractional transformations, the behavioral approach for sys- 

tem theory and the integral quadratic constraint formulation. In this approach, a system 

is defined by implicit equations, and the central analysis question is to test for solutions 

of these equations. In Part I, the general properties of this formulation are developed, 

and computable necessary and sufficient conditions are derived for a robust performance 

problem posed in this framework. 

1 Introduction 

In the predominant viewpoint in systems and control theory, a system is an input-output (110) 

entity, where the variables are clearly separated in two groups, and a cause-effect relationship 

is established between them. This approach entails a "signal flow" conception, adequate for 

systems which are deliberately built to  match the I/O philosophy, such as computers and 

amplifiers. 

For many other physical systems this point of view often appears artificial; as an example, 

a mass or energy balance equation in a chemical process is more naturally thought of as an 

equation or constraint between variables than as a cause-effect law. While this observation 
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will appear as no surprise to  an engineer performing modeling of such a system, i t  is only 

recently that its theoretical implications have been extensively considered. 

In a research program best summarized by the survey paper [19], Willems has advocated 

an approach to  system theory where the central concept is the behavior, a set of allowed signal 

trajectories, and no input-output partition is a priori established between the variables. The 

corresponding theory of finite dimensional linear systems has been extensively developed [19]. 

This paper adopts the same philosophy and contends that this point of view is even more 

natural for systems involving uncertainty. If the relationship between the variables is not 

precisely known, the cause-effect point of view is itself suspect: it is more natural to  think of 

an uncertain implicit relationship between variables. 

It is noteworthy that partial versions of this viewpoint have been present in early work 

leading to  current robust control theory. In the foundational paper [22], Zames states the 

basic stability theorems describing systems as relations, motivated by some nonlinear systems 

which do not fit the 1/0 concept; the same ideas are present in Safonov [16] in the early years 

of robust control. A further example which has led to powerful analysis techniques is the 

Integral Quadratic Constraint (IQC) formulation of Yakubovich [21] and Megretski [9, 101, 

where a component is described by constraints between the signals involved. 

It might be argued that as long as the 110 framework involves no mathematical loss of 

generality, an argument of symmetry or esthetics is not sufficient to  abandon an approach 

which is widespread. This paper shows evidence, however, that with respect to  robustness 

analysis, an implicit approach strictly enhances the range of applications of existing theory 

for the 1/0 setting. The main extension which is provided is the ability to  analyze over- 

constrained systems in a unified framework; these arise when superimposing an uncertain 

model and a number of constraints relevant to  the analysis problem under consideration. 

In Part I of this paper we propose a theoretical framework which encompasses the behav- 

ioral approach for system theory, the Linear Fractional Transformation (LFT) paradigm for 

uncertainty descriptions, and the IQC formulation. Section 3 introduces the framework and 

shows how it allows for the formulation of a general robust performance analysis problem, in 



terms of finding solutions to  uncertain equations. 

This problem leads t o  a notion of robust stability for implicit systems, presented in Section 

4, which naturally extends the existing 1/0 theory. The general analysis problem is reduced 

to  a canonical case to  be considered in the rest of the paper. 

Section 5 contains an analysis test for robust stability of an implicit system when the 

nominal equations are linear, time invariant, and the uncertainty is allowed to  vary in the 

class of arbitrary norm bounded operators. This condition is a convex feasibility test on 

a constant scaling, which extends the scaled small-gain conditions for robust stability, and 

recent results [17, 101 on the necessity of these conditions for the standard I/O setting. The 

extension also includes SI operator blocks in the uncertainty description. 

Preliminary versions of these results were presented in the conference papers [14, 151. All 

proofs are collected in the Appendix. 

2 Notation 

In this paper we will consider vector spaces of signals V C (F~) ' ,  where IF is the field R or 

43, and the time index T can denote continuous time R or Rt, or discrete time Z or Z+; for 

concreteness, the results will be presented in discrete time, but most of the theory extends to  

continuous time in a straightforward way. For T E T, define the truncation operator PT as: 

Signal norms can be introduced, choosing V as a Banach space of signals. Following 

[22, 51, we introduce extended signal spaces to  include signals which "blow upi7 at infinite 

time, by defining (for positive time axis T = Z+) V, = {v E ( P ) '  : PT(v) E V VT E T}. 

In this paper we will consider the 2-norm for signals; we will indicate later which parts can 

be extended to  other signal norms. 1; will denote the Hilbert space of square summable, 

Ifn-valued sequences over Z or Z+; /lvl12 = zCtEu lv(t)I2. lye is the corresponding extended 

space over ZS. The spatial dimension n will be dropped when clear from context. 

The class of linear, bounded operators G : l~--+ly is denoted .L(l;, I?) or simply L(12). We 



are also interested in operators which can be extended to 12,; in this respect it is convenient to 

consider the class of causal maps, which verify pT GPT = PT G for a11 T. Equivalently, a causal 

linear map can be characterized by having a lower triangular infinite matrix representation. 

A causal linear map over 12, has finite gain if there exists y < m such that llPTGvll 5 

y llPTvll for all v E 12,, T E T. Equivalently, the restriction of G to l2 is a bounded operator, 

of norm llGll = supTEz+ ( a  (GT)) where GT is the matrix representation of PTGPT,  

and a denotes maximum singular value. We will also use the minimum singular value of a 

matrix g ( G )  = min{llGfII : llEll = 1). 

The set of all causal, finite gain operators G : 1;,+12 is denoted L,(I;,, 1z) or simply 

L,(12,). The unit delay operator is denoted by A. A map G is time invariant if GX = XG. 

3 The Implicit Framework for Analysis 

3.1 Implicitly Defined Systems 

This paper deals with implicit characterizations of systems. Loosely speaking, this means that 

the laws governing a system and the constraints imposed on a problem under consideration 

are all expressed as equations on a specified set of variables. A formal definition follows. 

Definition 1 An implicit system (W, E, G) is defined by two vector spaces, the variable 

space W and the equation space E, and an equation operator G : W-1.E. The behavior 

of the implicit system is the set B = Ker(G) = {w E W : Gw = 0). The system is called 

linear if G is a linear map. 

The definition above is closely related to the behavioral approach to system theory, introduced 

by Willems [19]. In this type of formulation, all variables in a system are a priori on an equal 

footing, without a distinction between inputs and outputs. The system laws are constraints 

in the possible values of these variables, which define a set: the behavior. 



In our case the implicit equations defined by G play a central role, not captured entirely 

by the behavior, since as we shall see equation error will be added for the analysis. Intercon- 

nections of subsystems is reduced to superimposing equations. 

These descriptions arise naturally when modeling physical systems from first principles, 

where physical laws are more naturally thought of as equations between variables than as 

"signal-flow" maps. For instance, a resistor in a circuit is naturally modeled by the equation 

v- Ri  = 0, and there is no need to specify a cause-effect relationship between the two variables 

v and i; this distinction is artificial and not available a priori. For further discussion of the 

features of this modeling paradigm, see [19, 21. 

An important special case of Definition 1 is the class of dynamical implicit systems, where 

the sets W and E are vector-valued signal spaces. As an example, if R([) is a polynomial 

matrix, the differential equations R($)w = 0 define an implicit system, where G is the differ- 

ential operator R($), and W, E can be chosen as spaces of smooth functions (or alternatively 

distribution spaces). 

The choice of the defining elements W, E, G is essentially determined by the type of 

analysis to be performed. In this paper we will consider two possible settings which are 

standard in robust control: 

1. To formulate quantitative performance specifications, a signal normed space is required; 

we use the l2 space W = l;, E = 15, with G a bounded mapping between them. This 

paper deals with linear equations G E L(12). 

2. In some cases in stability theory it cannot be assumed a priori that signals have finite 

norm, and the extended spaces W = l;,, E = l;, are used, together with G E L,(12,). 

These two cases will be followed in parallel throughout this paper. 

3.2 Uncertainty and LFTs 

We now incorporate into the implicit paradigm deterministic descriptions of uncertainty in the 

style of robust control. The equation map G is replaced by a parameterized map G(A), where 



A is an uncertainty operator. A general class of uncertainty descriptions can be parameterized 

by the class of "spatially" structured perturbations, of the form 

A = diag [S1IrI7 . . . , SLI~L, A ~ + i ,  . . - 7  AL+F] (3) 

The diag notation implies that Ax = [Slzl, . . . , SLxL, . . . A,T,+~z~+~], where the vector z is 

broken into spatial components zi of appropriate dimensions. The blocks &I,.%, AL+j can be 

used to  describe real parameters, or dynamic (linear time invariant (LTI), linear time vary- 

ing (LTV) or nonlinear) perturbations; the square SiI,., blocks correspond to  an uncertainty 

perturbation which is repeated in the spatial dimension; the possibly non-square full blocks 

AL+j are unrestricted maps. In each case, there is a restricted class A of allowed pertur- 

bations. In this paper we restrict ourselves to  linear uncertainty blocks, i.e A c L(1;) or 

A c &(I;,). The uncertainty will be normalized to a unit ball BA in the operator norm, 

BA = {A E A : IlAll 5 1). 

For the parameterization G(A) of implicit uncertain systems we will adopt the linear 

fractional transformation (LFT) paradigm (see [Il l)  depicted in Figure 1, which provides rich 

uncertainty descriptions. Implicit LFT representations were first considered in [3]. 

Figure 1: Implicit LFT system 

In Figure 1, M = [: :] is a nominal map in L ( ~ , I ~ )  or L ( ~ , I ~ ) ;  an im- 

portant special case is M time-invariant. The uncertainty A has the structure (3). 

A remark regarding Figure 1 is that it contains remnants of the "signal-flow" approach, 

since the parameter A is depicted as an input-output map. This is done to  highlight the 

connection with the standard LFT paradigm, but from an implicit point of view the system 



in Figure 1 is simply characterized by the equations 

This description is "internal" since the signals z produced by the uncertainty operators are 

included in the variable space W .  The parameterization G(A) is therefore afine in the 

parameter A. This simple form allows the representation of a rich variety of uncertain systems; 

in fact, all the complexity is captured by the structure of A. A standard input-output LFT 

uncertain system can be easily converted to  this implicit form (see section 3.4 below). 

3.3 Integral Quadratic Constraints 

We will now present a feature of the implicit analysis framework which does not have a 

counterpart in the 1/0 setting: it allows for the representation of additional constraints in 

the signals of a robustness analysis problem. 

In particular, the implicit formulation over l2  permits the representation of Integral 

Quadratic Constraints (IQCs), which have been proposed by Yakubovich [21] and Megret- 

ski [9] as the basis of an alternative paradigm for robust control. IQCs are time-invariant 

quadratic forms in signal space, which in discrete time have the form 

where z(ejw) is the Fourier transform of an l2 signal, 11 = 11* is an L'TI operator, assumed 

bounded on l2  (i.e II(ejw) is in L,). 

IQCs can be used to  provide deterministic descriptions of an uncertain component, by 

defining a set of signals which captures the known information about the component (as in 

[9]). As will be explored in Part I1 of this paper, it may be of interest to describe properties of 

a disturbance, by constraining it in terms of IQCs; of such nature are "whiteness" constraints 

as in [12], which describe spectral properties of a disturbance. 

It is now shown that these general IQCs can be captured by an uncertain implicit system. 

First choose P LTI (e.g. P = k 1 )  such that P*P - 11 > 0. A spectral factorization gives 



P(ejw )*  P(ejw ) - II(ejw) = &(ejw )*Q(ejw ), where & can be chosen in E,  . So I I  = P* P - Q*&, 

which reduces ( 5 )  to  1 1  P Z I I ~  5 1 1 ~ z l l ~ .  We now introduce the following lemmas: 

Lemma 1 Let z 6 IT, v E 1;. The following are equivalent: 

( 4  IIvIIi - I1.11~ 2 0 

( i i )  3 A  E L(1;, I:), llAll I: 1 : A v  = 2 

Lemma 2 Let z ,  v E 1:. The following are equivalent: 

(i) JT v(ejw)v(ejw)* - z(ejw)z(ejw)* dw 2 0 
-7r 

(ii)  'i'rl E Cd, Ilr1*vII2 2 I l r l * ~ 1 1 2  

( i i i )  36 E L(12), llSll 5 1 : SIdv = z 

From the above discussion and Lemma 1, for each z satisfying ( 5 )  there exists an operator 

A,, IIAcll 5 1 such that P z  = Ac&z.  So the set of z E l2 satisfying ( 5 )  can be described as 

the union over A,, 1 1  A, 1 1  5 1 of the behavior of the uncertain implicit system 

Remarks: 

Although for each A, the set K e r ( P  - A,&) is a linear subspace, the union of the 

parameterized behaviors describes a more complicated set given by ( 5 ) .  

The set llAcll 5 1 includes arbitrary time-varying non-causal operators. In this respect, 

implicit systems obtained from this procedure are a priori considered in the l2 setting. 

A finite number of IQCs can be given a representation ( l l ) ,  where Ac is now a struc- 

tured uncertainty operator. 



Analogously, the set Ullacll<l Ker(P - ScI &) for scalar Sc can be shown by means of 

Lemma 2 to  correspond to  the matrix-valued constraint 

Matrix valued constraints appear naturally in the context of characterizing multivariable 

white noise disturbances, as shown in Part 11. 

3.4 Robust performance analysis in the implicit setting 

To illustrate how implicit descriptions might be used for robust performance analysis, consider 

the uncertain I/O system of Figure 2, where it is known that the (disturbance) input d satisfies 

a finite number of restrictions in terms of IQCs as in (5).  We want to  determine whether there 

exist signals d in the allowed class, and perturbations A, such that the system l2  gain is 1 or 

larger. This last requirement is captured by the extra "performance IQC" lld112 - 1 1 y 1 1 2  5 0. 

Figure 2: Input/Output LFT system 

The implicit equations for the system, the IQCs on d and the performance IQC are 

captured respectively by (13),(14) and (15), where Ac and Ap are norm bounded operators 

(Ac is in general structured). 



The superposition of (13), (14) and (15) gives an implicit description for the robust per- 

formance analysis problem, which essentially reduces to  the question: 

Q: "Does there exist a perturbation (A,, Ac, Ap)  such that (13-15) have non- 

trivial l2 solutions?". 

In Q the input/output partition has been eliminated from the problem, and the analysis 

is posed in terms of equations and solutions, rather than maps and gains; this allows for a 

natural incorporation of the constraints (14). Questions of this type are analyzed in the rest 

of this paper. 

4 Stability in Implicit Systems 

We begin by reviewing the concept of stability in standard system theory. Referring to  the 

M-N feedback interconnection of Figure 3 (a), stability can be given two interpretations. 

(4 ( b )  
Figure 3: Stability in a standard feedback interconnection 

In the first place, from the point of view of dynamical systems, stability ensures that 

solutions do not exist to  the loop equations where the signals are unbounded (e.g. in 12e\12). 

This notion is usually considered for causal systems M ,  N .  

Secondly, from an operator theoretic point of view, stability is sometimes interpreted as 

bounded sensitivity to small errors or disturbances (el, e2 as in Figure 3 (b)) injected at the 
- 1 

interconnection. In other words, the map between el ,  e2 and signals W,Z is a 

bounded operator in some normed space. L ~ h i s  notioI; can be stated for non-causal systems 



M and N ,  provided all signals are a priori constrained to the normed space (e.g. la) where 

the operators M and N are well defined. 

Although these two versions are equivalent in many special cases of causal linear systems, 

we will find it useful to  distinguish the two for the extension to  the implicit framework, since 

we are led naturally to include non-causal perturbations as explained in Section 3.3. We will 

term the first notion "stability" and the second "la-stability". All the material in this section 

can be extended to other signal norms (e.g. I,) with minor changes. 

4.1 Stability and 12-Stability 

Definition 2 Let (W, E, G) be an implicit linear system over la The system is la-stable if G 

is left invertible in L(12), i.e. 3L E L(12) such that LG = I. 

An equivalent characterization is 

Proposition 3 Gw = 0 is la-stable if and only if 

Interpreting the definition, la-stability implies that the la behavior B of the system is the 

trivial space, and that this property is not "sensitive" to equation error: an arbitrary small 

equation error e does not allow solutions w, llwll = 1, to the equation Gw = e. 

An important remark is that in this framework, stability is only a property of systems 

with no free variables ("autonomous" systems, in the language of [19]), i.e. with at least as 

many effective equations as variables in w, so that only the trivial behavior is left inside la. 

We will now compare this definition with the standard one, by considering the feedback 

interconnection of Figure 3. The maps M ,  N are (possibly non-causal) operators on 12. 

This interconnection can be represented by the following equations in the variables w, z: 



According to  Definition 2, 12-stability implies left invertibility of G = 1 -; -: 1.  This 
L J 

is slightly weaker than the usual definition, which requires G invertible ( G  left invertible and 

also G onto E). In other words, Definition 2 is weaker in the fact that equation errors are 

not required t o  be free to  vary over 1;. 

The reason for this weakened definition in the case of implicit systems is that we want 

to  extend the notion to  systems which are over-constrained (more equations than variables), 

such as the example considered in (13-15). In these cases, the operator will not be onto in 

general, and this should not be required: the equation errors need not be "free" since they are 

not physical noises (which should be included in the w variables); they just provide a means 

of testing sensitivity of equations. 

We now turn t o  the notion of stability for causal systems. We consider the following 

definition, which extends the standard theory [22]: 

Definition 3 Let (W, E , G )  be an implicit linear system over lZe: W = l ie ,  E = I;,, G : 

W 4 E  causal map . The system is said to be well posed if G has a causal left inverse 

L : E+W. The system is stable i f  it is well posed and i n  addition, L has finite gain o n  the 

range of G ,  i.e. 37 E R+ such that for every e = G w ,  and every T ,  llPTwll 5 711PTell. 

Remark: An immediate consequence of the definition is that a stable system, with errors 

e E 12,  only allows signals w E l2 to  satisfy the equation G w  = e. 

Definition 3 can also be interpreted in terms of the infinite matrix representation (46) of 

the equation operator G, and its truncations GT as in (2). 

Proposition 4 The implicit system (W, E ,  G )  over 12, is stable i f  and only i f  

inf a ( G ~ )  > 0 
T 1 0 -  (I8) 

To illustrate these definitions, we will consider the case of an "autoregressive" system (see 

[19]) defined by linear time-invariant equations of the form G = R(X), where R([) is a p x q 

polynomial matrix. 



Proposition 5 Let R(f)  be a p x q polynomial matrix. Then 

(i) The system R(X)w = 0 is la-stable if and only if R(f)  has full column rank for all [ in 

the unit circle 051 = 1) 

(ii) The system R(X)w = 0 is stable if and only if R([) has full column rank for all [ in 

the unit disk (If1 5 1) 

Remark: The same argument carries through if R(() is a rational, rather than polynomial 

matrix, with no poles on the unit circle (respectively the unit disk). 

Example 1 Consider G(X) = 1 - 2X. Setting W = E = lac, we find that the implicit system 

over lae is not stable, since the signal w(t) = 2t , t  > 0, which is in lae\12 gives e = Gw E la 

(e(0) = 1, e(t) = 0 for t > 0). 

However, the system over la (with W = E = la) is la-stable since infllwll=l llGwll = 1 > 0. 

4.2 Robust Stability and 12-Stability 

In this section we consider the case of implicit uncertain systems as in (4). For simplicity we 

will assume henceforth that the nominal equation map M is in C(lz) for the 12-stability case, 

or in Le(lae) for the stability case. 

Definition 4 Let M E C(12), A C C(12). The implicit system (4) has robust la-stability if it 

is la-stable for each A E B A .  

Robust la-stability implies that for each A E B A ,  y(A,  M )  has a bounded left inverse. In 

some treatments (e.g. [17]) a uniform notion of robust stability is employed, which in this 

context would imply that there is a uniform bound on the norms of the left inverses across 

B A ;  we will not pursue this refinement here since it is appears to  be no stronger in most cases 

of interest l. 

The constrained I/O robust performance problem posed in Section 3.4 converts to  robust 

la-stability of the corresponding implicit system: a negative answer to  Q implies a trivial 

We acknowledge G. Dullerud for pointing this out; see also the proof of theorem 10. 
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la-kernel for every A. Robust la stability is slightly stronger in requiring this property t o  be 

insensitive to  equation errors, but this is desirable anyway. This example will be reconsidered 

in 5.3. 

The following proposition provides a simplified representation: 

Proposition 6 The implicit system (4) has robust la-stability if and only if 

(i) D is la-stable, with bounded left inverse L. 

(ii) The implicit system [I;?'] z = 0, where d = A - BLC, k = C - DLC, has robust 

la -stability. 

The previous result has reduced robust la stability of (4) to  a nominal la-stability condition 

(i) plus a robust la-stability condition (ii) in a simplified setup. We now turn to  the situation 

of robust stability in systems over la,. 

Definition 5 Let M E LC(l2,), A E Cc(lze). The implicit system (4) has robust stability if it 

is stable for each A E BA.  

As is natural from the definition of stability, robust stability means that for each A E BA, 

p(A,  M )  admits a causal left inverse which has finite gain on the range of p(A,  M). For 

the reduction result corresponding to Proposition 6, the nominal stability condition will be 

slightly strengthened to  

(it) D has causal left inverse L, which has finite gain over la,. 

The strengthening comes from the fact that the finite gain of L is required over all lac, not 

just the range of D. This does not appear to  be a major limitation, since it is no stronger for 

the case when D is LTI, as shown in the proof of Proposition 5. 

Proposition 7 Consider the system (4) where A E Lc(lze), and M E L,(12,) satisfies (it). 

Then the system is robustly stable if and only if [ I  -kA] z = 0 is robustly stable, where 

A = A - B L C ,  C = C - D L C .  



The previous results show that for robustness analysis, i t  suffices to  consider the canonical 

implicit system 

where for simplicity we have renamed A, 6 as A ,  C. This case will be considered in the rest 

of the paper. 

It is useful to  compare this setup with the question of robust stability in standard robust 

control, which specifies the invertibility of (I - A A ) .  The main difference is that (19) allows 

for additional constraints defined by the C equations. A problem with more equations than 

variables such as the one considered in (13-15) will result in the presence of these additional 

equations. 

A problem where the C equations do not appear will be termed the "unconstrained" case. 

For example, if the IQCs (14) are eliminated from (13-15), the problem can be reduced to  the 

equations 

which are in the standard form ( I  - A A ) z  = 0.  

In an unconstrained problem, the only apparent difference with the standard case is the 

fact that our definition of stability only specifies left invertibility of ( I  - A A ) .  The following 

proposition shows that the two notions become in fact equivalent when they are considered 

across BA 

Proposition 8 Let A E L(12), A C L(12). Then ( I -  A A )  has bounded left inverse V A  E BA 

i f  and only if ( I  - A A )  has bounded inverse V A  E BA.  

A similar result can be obtained for the case of robust stability of systems over 12e. This 

shows nothing changes when using the left-invertibility notion for the unconstrained case; on 

the other hand, this is the only reasonable notion for constrained problems. 



5 Robustness Analysis with LTV uncertainty 

In this section we will focus on the class of implicit uncertain systems as in (19) where equation 

maps A, C are linear time invariant (LTI) and the uncertainty set A consists of arbitrary 

linear-time varying perturbations with spatial structure as in (3). 

The main result in this section is a necessary and sufficient condition for robust stability. 

This result extends the "scaled small gain" sufficient conditions for robust stability in the 

standard input output framework, and recent results on the necessity of the constant scales 

tests for linear time-varying perturbations, obtained by Shamma [17] and Megretski [9, 101 

(and also previously in the 1, setting by Khammash [8]). 

Once more the l2 and 12, settings are considered separately; we will concentrate, however, 

in the l2 setting since the main motivation for over-constrained problems, given in section 3.4, 

refers to  this case. These issues will be discussed further in section 5.3. 

5.1 A Necessary' and Sufficient Condition for Robust la-Stability 

We now consider analysis in the l2 setting; A ,C, A are in L(12) of appropriate dimensions 

(over Z or ZS, and are not restricted to  be causal); A ,C are LTI. 

In view of the duality between IQCs and implicit LFT descriptions which was shown 

in section 3.3, the theorem given below is a version in the implicit LFT framework of the 

S-procedure losslessness results of Megretski and Treil [lo]. The main extension needed is 

to  capture the SI blocks, or equivalently, to  consider matrix-valued IQCs; this is done by 

extending the "V set" method in standard p-analysis [Il l .  This extension has more than 

purely theoretical interest since these representations arise naturally in the context of set 

characterizations of white noise, as shown in Part 11. 

We begin with some further notation. For a delta structure A of the form (3), let Y be 

the set of constant, hermitian scaling matrices Y that commute with the elements in A,  



Y is a real vector space, and we can define an inner product 

Two important subsets of Y are X = {Y E Y ,  Y > O), and x = {Y E Y, Y > O}, the set of 

positive and nonnegative scalings, respectively. They are both convex cones in Y .  

Given a vector z ( t )  E l;, the block structure introduces a natural partition of z ,  

Given an LTI map A E .C(12), an analogous notation is used for the partition of A x  E 1;. 

Consider the following quadratic functions of z E I ; ,  where 6 = Ax:  

Now let C E L(12) be LTI and E > 0. Define a subset of Y ,  

Lemma 9 The closure v%f V' is convex and compact i n  Y .  

Theorem 10 Let A, C be LTI stable systems, V' as in  (24) .  Assume A is the set of struc- 

tured, otherwise arbitrary linear operators i n  1;. The following are equivalent: 

( i )  T h e  implicit uncertain sys tem (19 )  has robust l2 - stability. 

( i i)  3 E > 0 such that  VW X = 0 

( i i i )  3 X E X such that  A * X A  - X - C*C < 0 

In (iii) above, condition (25)  is of the form lP < 0 where !P is a self-adjoint operator on 

I ,;  this must be interpreted as a strong version of negative definiteness, (lPu, u )  5 -p  llu112 



for some p > 0. For the case of A,C finite dimensional, this condition can be tested in the 

frequency domain in the form 

3 X E X, such that A ( e j W ) * x ~ ( e j W )  - X - c(ejW)*c(ejW) < 0 Vw E [-n, T] (26) 

This test is a Linear Matrix Inequality (LMI, [I]) evaluated over frequency, and lends itself 

to  available convex optimization tools. 

5.2 Necessary, Sufficient Conditions in the Zae setting 

As remarked before, the motivation we have provided for constrained problems refers mainly 

to  the l2 setting. It is well known, however, that in the standard unconstrained case, the 

condition A'XA - X < 0, (or equivalently I I X I A X - '  < 1) is sufficient for robust stability I I 
in the 12, sense (this is a consequence of the small gain theorem [22]). Also, [17, 91 show it is 

a necessary condition. 

It therefore seems natural to  explore this issue in the constrained case of (19). We first 

consider necessity: 

Theorem 11 Let A, C be LTI in .Ce(lZe), A is the set of structured, otherwise arbitrary 

causal linear operators in ,CC(lze). If (19) over 12, is robustly stable then (25) holds. 

For the proof, it clearly suffices to prove condition (ii) in Theorem 10; the only required 

modification in the argument presented for Theorem 10, is that causality of the destabilizing 

perturbation must be ensured. This can be done following the lines of the proof in [17] for 

the 110 case; for reasons of brevity this construction will not be developed here. 

Regarding the issue of sufficiency of condition (25)) we consider the following example. 

Example 2 Let A = 2, C = 1 - 2X. A E ,Cc(lz,). For any X E R+, 

so for 0 < X < , (25) is satisfied. But the perturbation A = X gives [ I  -tA ] = [ t  1 
which is unstable, as shown in Example 1. 



This example shows that in general, condition (25), (or (26)) is not sufficient for robust 

stability, even for time invariant perturbations: (25) does not provide information of the 

behavior outside 12. One could think of strengthening condition (26) to  include frequency 

points inside the disk; this would eliminate the previous counterexample, and in fact guarantee 

robust stability with LTI perturbations (see Part 11)) but it is still not sufficient for the LTV 

case. A counterexample for this is the system A = 4X - 8X2, C = 1 - 4X + 4X2; we omit the 

rather lengthy verification '. 
We can state, however, a partial result which is applicable in many cases. 

Theorem 12 Let A be LTI in L,(12,), and C be a static map. If (25) holds, then system (19) 

is robustly stable over the class A, of structured, otherwise arbitrary operators in ,Ce(lZe). 

Although this result is not a major extension of the standard small gain theorem of [22], 

since only static additional constraints are allowed, it is still quite rich from the point of view 

of posing constrained robustness analysis problems, as will be shown below. 

5.3 Analysis for Robust Performance Revisited 

To conclude Part I of this paper, we review the example considered in section 3.4 using the 

results of this section. Referring to  (13-15) and Figure 2 we assume that H, P and Q are 

causal, LTI, stable maps. We recall from section 3.4 that without loss of generality in the 

analysis, P can be chosen to be a static map k I .  Also the perturbations Ap, A, vary in the 

class of arbitrary time-varying operators. 

The reduction procedure from Propositions 3, 4, yields a system of the form (19)) where 

If P is static, we observe that C is static, as in the assumption of Theorem 12. Therefore 

if A, is LTV uncertainty, condition (25) is necessary and sufficient for 

2 ~ h i s  counterexample can be related to an analogous situation in [20], involving a frequency domain con- 

dition over the right half plane. 



robust la-stability in the case A,, Ap, A, in ,C(lz), 

robust stability in the case A u 7  AP, A c  in ,Cc(lze), 

If we review the problem statement that let to  equations (13-15)) the l2 version seems more 

appropriate, but we might also be interested in a "hybrid" problem, by testing strong stability 

in the zu variables. More precisely, A, may be considered a causal perturbation, and it  must 

be guaranteed in the first place that the z, variable does not "blow up" (it remains in l2 if 

d and the equation errors are in 12). Once this is known, the analysis can be restricted to  l2 

and the (possibly non-causal) perturbations Ap, A, can be considered, casting the robust 

performance analysis as a robust l2 stability question, as argued in section 3.4. 

This hybrid question is also answered by the test (25 ) ;  in fact, since the first block of C is 

zero, the upper portion of A*XA - X - C*C is HI1XuHl1 - Xu, which provides the standard 

robust stability test in the z, variables, in addition to  the robust l2 stability test on all the 

variables. 

6 Conclusions 

The work reported in Part I of this paper provides the foundation for a more general robustness 

analysis theory, which extends the standard theory based on the small gain theorem. In this 

approach, we abandon the concepts of "input-output maps" and "gains" in favor of equations 

and signal constraints, and the central analysis question is to  test whether there exist solutions 

to  these equations. 

The results in this paper demonstrate that nothing is lost, from a mathematical point of 

view, by adopting this approach for analysis instead of the standard input-output formulation; 

on the contrary, the analysis setup presented in section 3.4, further developed in Part 11, shows 

evidence of substantial advantages. 

There are still reasons to  preserve the standard "signal-flow" approach, which has led to  

a large body of knowledge, since some of its intuitive value for design is lost in the implicit 

formulation. The conclusion is, however, that if research is not confined to  the traditional 



paradigm, the potential of the resulting theory will be enhanced. 
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Appendix: Proofs 

Lemmas 1 and 2 

The only non-trivial implication is (ii) +- (iii) in Lemma 2. 

If GI,. . .6,, is an orthonormal basis of the subspace of l2  spanned by the coordinates 

vl , .  . . vd of v, we write 6 = Pv ,  where P is an invertible matrix, 6 = [&, .  . .6,, 0, .  . .0]' . Let 

i = P z ,  then (ii) implies i = [ i l ,  . . . i,, 0,.  . . O]', and 

Now define S : u H C:=l(u,6i)2i; then S : Gi H i i , i  = 1. .  . r ,  so SI6 = i which implies 

SIv = z. Also, by (29) and the Bessel inequality, llSull I: IICl=l((~, 6i).ilill 5 IIuII. SO IlSll < 1. 

Proposition 3 

For the necessity, note that since LG = I, IILII llGwll > IIwII. For the suffciency, condition 

(16) implies that G is injective, and its range is closed. An application of the open mapping 

theorem [4] implies that G has a bounded inverse on its range, which can be extended to  a 

bounded operator on E, resulting in a left inverse for G. 



Proposition 4 

[Necessity] the definition of stability gives IIGTEII 2 : / I [ I I  from which (18) follows. 

[Sufficiency] Let E = infT>oa(GT) - > 0. Then a causal left inverse L can be constructed 

a lower triangular left inverse LT of GT, consider the matrix 

. Since g(GTtl) > 0, GT+i,T+i has left inverse LT+l,T+l, then 

is a left inverse of GT+i. This procedure produces a causal operator L : E+W. If e = Gw, 

then PTe = GTPTw therefore llPTell > E IIPTLell SO L has finite gain in the range of G. 

Proposition 5 

(i) If R(ej"~))w = 0, )w # 0, it is easy to construct la signals w(" with norm 1, in the direction 
k - + m  

w, and spectrum supported in [wo - i ,  wo - i ] ,  so that 11  R(X)W(")II --+ 0,violating la-stability. 

Conversely if R(6) has full column rank on the unit circle, min, a(R(ej")) > 0 and it is easy 

to construct pointwise an C, left inverse for R(X). 

(ii) If R(0) has a kernel, then R(X) cannot have a causal left inverse, so well posedness 

fails. If R(&)w = 0, 0 # 161 5 1 then the signal w(t) = (k) '~ ,  t > 0 is in 12,\12, but 

R(X)w E la, violating stability. 

If R(6) has full column rank over the unit disk, then the theory of coprime factorizations 

over the stable ring (see e.g. [18]) implies that R(6) has a left inverse in EXm. This is a 

causal left inverse which has finite gain (over all 12,) so stability is satisfied. 

Proposition 6 

[Necessity] If (4) is robust 12-stable, setting A = 0, y(0, M )  = [i i] has bounded left 



inverse, therefore D has bounded left inverse L. Fix A E BA; the following identity holds: 

where U and V are the invertible operators 

and 

Also denote @(A, M) = 
I 1 . If T(A) is a bounded left inverse for p(A, M) ,  then 

L J 

U-lT(A)V is a left inverse for v(A,  M), which implies @(A, &) is left invertible. 

[Sufficiency] If ?(A) = [TI T2 ] is a bounded left inverse for @(A, M) then (note that by 

definition of &, L(? = O), 

therefore y(A,  M) is left invertible, and so is y (A,  M )  by (30). 

Proposition 7: 

Defining U, V as in (31), by assumption (it) U, V, U-I, V-I are in L,(12,). From (30), 

robust stability of (4) reduces to  that of y(A,  M) [:I = 0 Clearly this implies stability of 

@(A, &?)z = 0, It remains to show the converse implication. 

Fix A E Ba, let [ TI T2 ] be a causal left inverse of q ( A ,  A?), with finite gain on its 

range, and construct a causal left inverse for y(A,  M )  as in (33). The bottom portion 

has finite gain by (i'). The top portion is 
[ o  L I  



0 
where [ I  ] has finite gain and maps a vector in the range of v(A, &f), to  the range 

0 ( I -  DL) 

of !!!(A, k )  where [TI  T2 ] has finite gain, therefore the top portion has finite gain in the 

range of p(A, M). 

Proposition 8 

The result follows from some results in spectral theory of operators. For simplicity we consider 

the complex field IF = C, but a similar proof can be written for the real case. For an operator 

M : 12(Cq)+12(Cq), the spectrum is defined as c(M) = {[ E C, ([I - M) not invertible). A 

subset of the spectrum is the approximate point spectrum, defined as 

cap(M) = {C E 43, ([I - M )  not left invertible} = {[ E 43, inf ]]([I - M)(,z)/~ = 0) (35) 
11~11=1 

It is known (see [4]) that the boundary of the spectrum is in the approximate point spectrum. 

Therefore the spectral radius p(M) = max{l[I : [ E r(M))  is achieved at c0 E ca,(M). 

We now prove the only if portion of the proposition (the other direction is trivial). Assume 

there exists A. E BA, such that I - AoA not invertible. Therefore p(AoA) 2 1. This implies 

there exists co E qa,(AoA), with 2 1. Therefore C 0 I  - AoA is not left invertible, which 

gives I - AA not left invertible, with A = k A  E BA,  a contradiction. 

Lemma 9 

Since A E .C(12), Ve is bounded, therefore V' is compact. For the convexity proof, it suffices 

to show that co(Ve) c V', where co(V') is the convex hull of V'. Consider the convex 

combination aA(z) + (1 - a)A(v) of two elements of V' (a finite number of terms can be 

handled in a similar way): (11~11 = 1 1 ~ 1 1  = 1, llCzll < E ,  llCv11 < E ,  0 < a < 1). Define 

v(" = (4 * Z  + (1 - a)+Xkv. Then 



where (37) uses the time invariance of C. The last terms in (36), (37) have limit 0 as L o o .  
2 k-03 

Therefore llv(')ll -+ a 1 1 ~ 1 1 ~  + (1 - a )  1 1 ~ 1 1 ~  = 1, and (ICv(')II < r for large C, and therefore 

IIC-ll < E for k 2 C,. A similar argument using the time invariance of A, shows that 

Q~(v(')) '= a a i ( z )  + (1 - a)Qi(v) i = 1..  . L (38) 
'-03 

OL t j  (v'") -+ aoLtj(z) + (1 - a)oLSj (v) j = 1 . . . F (39) 

(k) '-03 This gives A("--) - aA(z) + (1 - a)A(v) E V' 
IIu(")II 

Theorem 10 

(i) + (ii) By contradiction, assume that for all E > 0, p' n x # 0. For a fixed r > 0, we can 

therefore find z E l2 such that llzll = 1, llCzll < E, and A(z) + t21 2 0. Let ( = Az. We have 

Focusing on (40), a slight extension of Lemma 1 shows that there exists an LTV operator 

ALtj, IIAL+j 1 1  < 1 and an error signal eL+j, I le~+j  11 = O(E) such that A L + ~ ( L + ~  + e ~ + j  = z ~ + j .  

A similar argument (extending Lemma 2) is used for (41). The result is a structured LTV 

operator A, 1 1  All 5 1 and an error signal e, llell = O(t) such that ( I  - AA)z = e. Therefore 

Since this holds for any E, there exist sequences of signals z%nd perturbations Ak such that 

It remains to  show that a single perturbation A and a sequence  an be found with the 

same property. The following construction, (which shows that the concept of uniform robust 

stability is no stronger in this case) is due to Dullerud [7]. For simplicity we consider T = Z+. 



k - w  Starting from (43), let / / ( I  - AkA)z"l < e k  with ek - 0. For fixed k we can find a 

truncation time Tk such that 

11(I - PTkAkpTkA)zk 1 1  < t k  and II(I - PTk)i2zk/l < tC (44) 

T-cc This follows from the fact that PT Ak PT v -+ Akv for any v; PT Ak PT is identified with the 

truncated matrix A: as in ( 2 ) .  Now define the operator A with infinite matrix representation 

Let ri, be defined by TO = 0, = T~ + Tk for JG > 0, and 2" XTkz? From the time 

invariance of A, (I - AA)2" XTkz" AXTkAz' = Xn(I - A k ~ ) z k  where A q a s  infinite 

matrix representation 
a? o o . . .  

(46) 
. . .  

It follows that 

k -+w Since 11271 = 1, and IICZ"I I 0 from the time invariance of C, [ I  -tA] is not ,,-stable. 

( i i )  + ( i i i )  

V' and x are disjoint convex sets in the inner product space Y ,  V' is compact and x is 

closed. We can use a hyperplane separation argument to find X E Y ,  71 > 0 such that 



Since X is a cone, a can be chosen to  be 0. It is easy to  show that 

(X,Y) > 0 VY E Y ,  Y > 0 * X > 0 (49) 

A small perturbation of X ensures X > 0 (therefore X E X), and by continuity and com- 

pactness of V' we can modify q to  achieve 

for the new X. Furthermore, by scaling down X (and q )  we can ensure (50) holds and 

Now for any z = 12, llzll = 1, t = Az, 

= (XAz, Az) - (Xz ,  z) = ((A*XA - X)z ,  z) (52) 

Let Q = A*XA - X - C* C. 

If llCzll < E, then A(z) E V 9 o  (Pz ,  z) 5 ((A*XA - X)z,  z) = (X, A(z)) 5 -q < 0 by (50). 

If llCzll > E, then (Pz ,  z) < ((A*XA - X)z,  z) - I I C ~ I ~ ~  < y2 - c2 < 0 using (51). 

Therefore (Pz ,  z) < mas(-q, y2 - t2) < 0 for llzll = 1, which implies XI! < 0. 

(iii) + (i) 

Fix X > 0 which solves (25). Without loss of generality it can be assumed that X = I. 

This results from the fact that invertible operations yield 

I - A A  I - A A  [ai;][  I..=[ ] 
where A a X ~ A X - b ,  C a CX-4 verify (25) with X = I. The notion of negative definitenes 

allows by continuity to  find a2 < 1 such that 

Let e , z  E l2 (11z11 = 1) and A (//All < 1) satisfy 



/ I A A Z / / ~  < I I A z ~ ~ ~  = (A* Az, z) 5 a2(z,  z) f (C'Cz, z) = aZ + \/e2ll2 (56) 

Therefore llAAzll < a + Ile211, and llelll = 1l.z - AAzll > (1 - a )  - Ile211 This shows that 

//ell 1 (Ilelll + lle211)/1/2 > (1  - a r ) / 1 / 2 ,  which proves robust la-stability by Proposition 3. 

Theorem 12 

By the same argument given above, assume without loss of generality that X = I, and let a 

satisfy (54). Let T be fixed, z, e satisfy (55), with truncation P T z  of norm 1. From causality 

Since P T z  E 1 2 ,  from (54) we obtain 

Since C is static, C P T z  = pTe2;  also I ~ P T A A P T ~ ~ / ~  < I I A P ~ Z I I ~ ,  leading to  

We conclude that llPTell > E for a fixed t > 0, independent of T, A, which implies that 

I - A A  
infT g ([ IT)  > 0 for every A giving robust stability from Proposition 4. 
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